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Abstract— Fast and efficient collision detection is essential
for motion generation in robotics. In this paper, we propose
an efficient collision detection framework based on the Signed
Distance Field (SDF) of robots, seamlessly integrated with a self-
collision detection module. Firstly, we decompose the robot’s
SDF using forward kinematics and leverage multiple extremely
lightweight networks in parallel to efficiently approximate
the SDF. Moreover, we introduce support vector machines to
integrate the self-collision detection module into the framework,
which we refer to as the SDF-SC framework. Using statistical
features, our approach unifies the representation of collision
distance for both SDF and self-collision detection. During this
process, we maintain and utilize the differentiable properties
of the framework to optimize collision-free robot trajectories.
Finally, we develop a reactive motion controller based on our
framework, enabling real-time avoidance of multiple dynamic
obstacles. While maintaining high accuracy, our framework
achieves inference speeds up to five times faster than previous
methods. Experimental results on the Franka robotic arm
demonstrate the effectiveness of our approach. Project page:
https://sites.google.com/view/icra2025-sdfsc.

I. INTRODUCTION

Efficiently generating safe operational trajectories for
robots is a critical challenge in the increasingly common
context of human-robot interactionn [1]. Motion planning al-
gorithms need to comprehensively consider external and self-
collision issues. Much like how humans perceive obstacles,
collision detection serves as the robot’s means of sensing
environmental obstacles, ensuring it avoids collisions with
its surroundings, humans, and itself [2]. Due to their low
computational efficiency, traditional collision detection meth-
ods, which are generally based on the geometric information
of obstacles and robot [3], [4], struggle to meet the current
demand for real-time generation of collision-free trajectories
in complex and dynamic environments.

The introduction of the Signed Distance Field (SDF)
[5] concept offers a novel approach to addressing collision
detection challenges. Originally a key research area in com-
puter vision and graphics, SDF has been widely used to
efficiently represent complex shapes [6], [7]. Migrating to
the field of collision detection, SDF provides an intuitive
and effective way of determining the shortest distance from
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Fig. 1: Overview of our work. (a) We combine our own
lightweight SDF framework with self-collision detection to
obtain a new collision detection framework SDF-SC. (b)
Trajectory Optimization based on the SDF-SC. (c) We use
SDF-SC to enable reactive control of the robot.

a point to the surface of an object, which perfectly meets
the collision detectors’ demand for quantifying the collision
distance between robots and obstacles. When applied to
motion planning, SDF is extended to represent manifolds of
general equality constraints [8], facilitating real-time trajec-
tory smoothing and enabling full-body control tasks [9], [10].
In learning SDF models, Koptev et al. [11] employ a multi-
layer perceptron (MLP) to fit neural implicit signed distance
functions. Liu et al. [12] propose a method that employs
composite SDF networks to improve the fitting accuracy
of articulated robots. Bernstein polynomials are employed
as basis functions for SDF, further enhancing storage and
computational efficiency [13]. These approaches learn SDF
models coupled with different joint configurations. However,
the complexity of network architectures or the verbosity
of functional representations often limits the precision and
speed of collision distance inference. Moreover, SDF has
inherent limitations: it can only calculate the distance to ex-
ternal obstacles, but cannot account for self-collision, which
is a critical and non-negligible issue in both simulations and
the real world [14], [15].

In this paper, we utilize a forward kinematic chain to opti-
mize networks framework. During this process, we discover
that extremely shallow networks are sufficient to achieve
excellent learning outcomes for the SDFs of each link.
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Moreover, we employ a parallel framework to significantly
accelerate inference, increasing the speed for thousands of
points to five times that of previous methods [11], [12]. The
joint boundaries of self-collisions and external collisions are
robustly determined using a data-driven approach based on
kernel perceptrons [16], [17]. Building on this, we represent
the self-collision boundary using support vectors and develop
a processing function that leverages the statistical properties
of support vector machine (SVM) [18] results to calculate the
self-collision distance. By integrating self-collision and the
external collision distance, we address a critical limitation of
the prior SDF frameworks, which did not account for self-
collisions during planning. This leads to the development of
our final integrated system, termed the SDF-SC framework.

We apply the SDF-SC framework as inequality constraints
within the optimization problem to evaluate its effectiveness
in generating collision-free trajectories. Additionally, we
integrate SDF-SC with a reactive control algorithm to tackle
the challenge of a robot avoiding multiple dynamic obstacles.
Experimental results demonstrate that this integration signif-
icantly enhances the robot’s dynamic response to external
and self-collision risks, leading to more robust and adaptable
performance in real-world scenarios.

The contributions of our work are as follows:
• We propose an efficient and lightweight parallel net-

works framework for learning SDF, achieving high fit-
ting accuracy while significantly accelerating inference
speed.

• We augment the framework by incorporating integrated
self-collision avoidance, while maintaining continuity
and differentiability throughout the process.

• We demonstrate the effectiveness of SDF-SC framework
through rigorous trajectory optimization experiments
and leverage it to design a robust reactive controller.

II. FRAMEWORK COMPOSITION

In this section, we introduce a holistic framework for
integrated collision detection, which includes a parallel
networks framework for learning the SDF of articulated
robots, an algorithm for self-collision evaluation, and dataset
construction. The overall algorithmic pipeline for estimating
the collision distance is depicted in Fig. 2, with the Franka
Emika Panda robot serving as the subject for demonstration.

A. Parallel Signed Distance Field Networks

Consider an articulated robot with n degrees of freedom
and K links, where the joint angles are defined as q =
[q1, q2, . . . , qn]

⊤ ∈ Rn. Each link is considered as a rigid
body, and the coordinate system {Sk}Kk=1 is rigidly attached
to the rigid body. Let S0 denote the base coordinate system,
and Tk ∈ SE(3) represent the homogeneous transformation
matrix from S0 to Sk.

Tk = FKk (q) (1)

where Tk is determined by the Denavit-Hartenberg (DH)
parameters and joint angles q of the articulated robot, and
the computation of the transformation matrix can be achieved

Fig. 2: Overall algorithm pipeline for estimating collision
distance. Collision distance refers to the safety margin be-
tween the robot and potential collisions.

through the forward kinematic chain. We map 3D query
points p ∈ R3 from the base coordinate system onto the
coordinate systems of each link through matrix transforma-
tion, which can be written as

pk = (Tk)
−1

p (2)

where pk denotes the coordinate representation of point p
in the coordinate system of each link. Owing to the rigid
attachment of the coordinate system to the link, the metric
distance dk from a point to the kth link is solely determined
by pk. It should be noted that when a point is located within
the robot, we represent its distance to the surface of the links
with negative values.

The distance from a point to an entire articulated robotic
system is defined as the minimum distance from that point to
each individual link within the system. For convenience, we
employ the function Γ(q,p) to represent the SDF value from
a point p to the articulated robot with joint configuration q,
with the following equation:

Γ(q,p) = min(d1(p1),d2(p2), · · · ,dK(pK)) (3)

Deviating from the traditional approach of directly mapping
the relationship from the joint configuration q and point p to
the fuction Γ(q,p) via a network [11], [19], our methodology
employs the learning of the distance functions dk for each
link to effectively fit Γ(q,p).

We employ a series of lightweight neural networks to
approximate dk(pk), with paralleling these networks to
expedite the computation speed. The minimum output among
them is defined as SDF value for the whole articulated robot.

B. Self-Collision Detection

Calculating the geometric distances associated with self-
collisions in robots is an exceedingly laborious and time-
consuming process [20]. However, due to the static and
unique nature of self-collision regions in the joint space of
articulated robots [21], [22], it is feasible to learn a con-
tinuous differentiable function that models the self-collision
boundary between colliding and free joint configurations.

To learn the self-collision function, we perform uniform
sampling of configurations within the joint space and sub-
sequently categorize them into binary classes based on
whether they collide or not. The sampled configurations qi
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are constrained within the joint limits q−, q+ , and these
constraints are utilized to normalize all configurations to qn:

q− < qi < q+, i = 1, . . . , Ns (4)

The label yi = +1 is used to denote that qi is in the self-
collision-free class, while yi = −1 indicates that qi is in
the self-colliding class. Subsequently, we employ a SVM
algorithm to construct a model for self-collision detection,
where the decision function takes the following form:

S(q) =

Nv∑
i=1

αiyiK (q, qi) + b (5)

where qi and yi represent the support vectors obtained from
the SVM algorithm and their respective collision labels. Nv

is the number of support vectors. 0 ≤ αi ≤ C denotes
the weight of the support vectors and C is an adjustable
parameter that serves as a penalty for errors, helping to
prevent overfitting. b ∈ R denotes the bias term in the
decision rule.

Within the purview of kernel function selection, empirical
evidence from prior studies has demonstrated that both the
Radial Basis Function (RBF) kernel and forward kinematics
(FK) kernel [23] manifest commendable efficacy. However,
in deference to the exigencies of rapid self-collision de-
tection, the RBF kernel K (q, qi) = e−γ∥q−qi∥

2

has been
selected for its computational efficiency.

C. Dataset Construction

In order to facilitate algorithmic comparison with prior
work, it is imperative to ensure the comparability of our
dataset with those utilized previously. Consequently, our
sampling methodology aligns with the approaches employed
in prior studies for dataset construction [11], [12], where
data points p are more densely collected near link surfaces.
Additionally, we have supplemented our dataset with dis-
tances obtained from the GJK in simulation environments,
providing a valid supplement. Ultimately, the dataset for each
link comprises 50 million entries.

In preparation for self-collision detection, we create train-
ing and validation datasets containing 100,000 and 30,000
configurations, along with a test set of 50,000 configurations.
Self-collision labels are generated using the self-collision
detection function from the FCL library [3].

III. HYPERPARAMETER SEARCH AND FRAMEWORK
EVALUATION

A. Hyperparameter Search

Following hyperparameter optimization of the SVM
model, we select C = 50 and γ = 1.0 as the optimal param-
eters, resulting in a total of Nv = 10446 support vectors that
constitute the self-collision boundary. The score distribution
of our trained model, as exhibited on the validation set, is
depicted in Fig. 3(a), indicates that S(q) = 0 represents the
self-collision boundary constituted by the support vectors.
When configurations are classified for self-collision based on
the boundary, the distribution of misclassified configuration
scores approximates a Gaussian distribution X ∼ N

(
µ, σ2

)
.

TABLE I: Performance metrics of the self-collision detection

Dataset Acc TPR TNR
Train 0.99 0.95 0.99

Validation 0.97 0.86 0.98
Test 0.97 0.88 0.98

(a) (b)

Fig. 3: (a) The score distribution of the self-collision detec-
tion model on the validation set. (b) The impact of different
network architectures on fitting accuracy.

For the seamless integration and enhancement of self-
collision detection with collision distance metrics, the robotic
configurations are delineated into three distinct regions based
on statistical features: distant, proximal, and transgressing
the self-collision boundary. The proximal region of the
self-collision boundary is delineated according to Gaussian
distribution principles as the interval (u− σ, u+ σ).

Within our framework, the collision distance is computed
using the following formula:

D(q,p) = Γ(q,p) + P (S(q)) (6)

where P denotes a processing function for the self-collision
scores. The equation for ∂D is naturally derived as follows:

∂D(q,p)

∂q
=

∂Γ(q,p)

∂q
+

∂P

∂S
· ∂S
∂q

(7)

∂S

∂q
= −2γ

Nv∑
i=1

αiyie
−γ∥q−qi∥

2

(q − qi) (8)

In the case of single-arm robots, such as the Franka, self-
collision configurations represent a special case, with their
occurrence being significantly less frequent than external
collisions. Consequently, we expect the collision distance
to approximate the robot’s SDF in regions deep within the
self-collision boundary, and to invert to negative values as
an indicator of constraint when configurations transgress the
boundary. Furthermore, the gradient ∂P is aligned with ∂Γ,
both directing towards increasing collision distance.

To this end, we formulate a continuous, monotonically
increasing processing function P , bounded both above and
below, as presented below:

P (s) = − 1

1 + eks+b0
(9)

where the parameters k and b0 are determined by set-
ting a suitable interval for P (u − σ, u + σ) in the range
[−0.95,−0.001] to fit the statistical characteristics of S.

Before evaluating the performance of external collision
distance detection, we conduct an optimization search for
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the number of layers and nodes in the parallel SDF network
to determine the most effective architectural parameters for
the networks. The layer count ranges from 1 to 5, while the
node count varies between 32, 64, and 128. Each network
in the parallel configuration uniformly employs a Root
Mean Squared Error (RMSE) loss function, with the Adam
optimizer used consistently across all. The ReLU function is
selected as the activation function and the maximum number
of iterations is set to 100 to ensure network convergence.

The impact of different network frameworks on the final
RMSE convergence is illustrated in Fig. 3(b). Experiments
reveal that a parallel configuration comprising merely two
layers of networks is sufficient to achieve an excellent fit for
the articulated robot’s SDF, with additional layers providing
minimal benefit in terms of RMSE reduction and, conversely,
increasing the inference time. To balance accuracy and
inference speed, we select a configuration of 2 layers with
64 nodes as the final architecture parameters for our parallel
SDF networks, which makes our model significantly lighter
compared to previous work [11], [12].

B. Framework Evaluation

All experiments are conducted using an Intel Core i7-
13700KF and an NVIDIA GeForce RTX 4070 GPU, with
all GPU operations performed using batch processing.

To evaluate the framework’s effectiveness for self-collision
detection, we evaluate it on the test dataset, employing
Accuracy (Acc), True Negative Rate (TNR), and True Pos-
itive Rate (TPR) as metrics. The collision distance D(q,p)
boundary for classification is set at u − σ. A high TPR
prevents the misclassification of collision-free configurations
as colliding, while a low TPR may result in overly con-
servative detection. On the other hand, a high TNR is the
most critical metric that should be maximized, as it prevents
the erroneous labeling of colliding configurations as free.
The self-collision detection model within our framework
achieves commendable performance across various datasets,
maintaining a TNR of over 0.98 in all cases, as detailed in
the Table I.

In our experimental analysis, we evaluate the mean com-
putational latency of our comprehensive framework, denoted
as SDF-SC, across a spectrum of 3D query points. This
evaluation is conducted in comparison with the relevant
Composite-SDF [12], Neural-JSDF [11], RDF [13] and the
standard Gilbert-Johnson-Keerthi (GJK) [4] algorithm. The
computations within the SDF-SC framework encompass not
only the forward kinematics chain and the parallel SDF
networks but also self-collision detection. The experimental
results are presented in Table II. Despite the comprehen-
sive nature of these computations, our detection efficiency
remains highly superior, exhibiting only a slight disadvan-
tage when the number of query points is relatively low in
comparison to the Neural-JSDF algorithm. However, in gen-
eral scenarios where environmental modeling often requires
sampling several thousand points, our detection efficiency is
generally five times greater than that of previous methods in
standard applications.

TABLE II: Comparison of computational times for collision
distance by various algorithms

Number of Query Pointss 1 100 1000 10000
SDF-SC (ours) ,ms 0.98 1.02 1.05 1.21
Composite SDF1,ms 4.33 4.78 - 6.63

Neural-JSDF ,ms 0.18 0.42 1.13 8.98
RDF(N=8) ,ms 1.12 1.21 1.27 2.12

GJK ,ms 0.95 87.4 815 7984
1 The data cited in this row is derived from paper [12].

Fig. 4: The reconstruction of the Franka Emika Panda’s links
is performed based on the distance isosurfaces D(q,p) =0
cm (solid) and D(q,p) =5 cm (transparent). Different colors
represent different links.

The average RMSE across the links of the articulated robot
serves as a metric for the quality of SDF fitting. Distances are
categorized with d <0.1 m as the region close to the robot
and 0.1 m< d <1.2 m as the region distant from the robot.
We compare our results within these two regions with those
of the Neural-JSDF, Composite SDF and RDF algorithms.
The results are as shown in the Table III.

TABLE III: Comparing the SDF accuracy obtained by the
algorithms

Region d < 0.1 m 0.1 m < d < 1.2 m
SDF-SC (ours), cm 0.16 0.28
Composite SDF, cm 0.21 0.36

Neural-JSDF, cm 1.04 1.06
RDF(N=8), cm 0.41 0.54

Our method exhibits superior accuracy in both distance
intervals, with an overall precision of 0.19 cm, attaining
millimeter-level accuracy. To more vividly demonstrate the
accuracy of our model, we utilize the integrated framework
to generate a 3D point cloud, thereby reconstructing the
surface of the Panda robot at D(q,p) =0 cm. As illustrated
in Fig. 4, the SDF reconstructed by our method accurately
reflects the surface contours of the Panda robot, with very
uniform widths between adjacent isosurfaces, indicating that
the integrated framework can effectively obtain the precise
SDF of the articulated robot.

The evaluations conducted indicate that the integration of
self-collision and external collision detection into a unified
collision distance D(q,p) within our framework is viable,
and it performs effectively in detecting both types of colli-
sions.

IV. MONTION PLANNING EXPERIMENTS

In this section, we substantiate the superiority of our
framework in robotic motion planning through two categories

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 2239 submitted to 2025 IEEE International Conference on
Robotics and Automation (ICRA). Received September 15, 2024.



of experiments: 1) Trajectory Optimization 2) Reactive Con-
trol. During planning, we utilize D(q,p) as the collision
distance to simultaneously avoid self-collisions and external
collisions.

A. Trajectory Optimization with SDF-SC

To achieve the most efficient trajectory while meeting
the requirement of avoiding static obstacles, we define the
optimization problem as follows:

min
q

f(q) =

T−1∑
t=0

∥FK
(
qt+1

)
− FK (qt) ∥2

subject to D(q,p) + ϵ ≤ 0

∥qt+1 − qt∥ ≤ wmax

∥ee(qt+1)− ee(qt)∥ ≤ vmax

q− ≤ q ≤ q+

(10)

where f(q) denotes the cost function of the optimization
problem. T represents the number of planned path points
or time duration and FK stands for the forward kinematics
chain of each link. ϵ denotes the safety margin, which is
employed to augment the level of conservatism in collision
avoidance. ee denotes the position of the end-effector, while
vmax represents the maximum velocity for the end-effector.

To demonstrate the broad effectiveness of our optimization
algorithm, we design scenarios with a simple environment
containing three obstacles and a complex environment con-
taining ten obstacles, as illustrated in Fig. 5. In our ap-
proach, we utilize the RRTconnect [24] algorithm to swiftly
generate an initial trajectory, followed by employing the
SLSQP [25] optimizer for our optimization problem, thereby
obtaining the final optimized trajectory. Since our framework
is differentiable, the gradients of the constraint functions
can be obtained using the automatic differentiation functions
in the PyTorch library. As a benchmark, we use the RRT*
algorithm [26], which is widely applied in path planning and
theoretically proven to achieve asymptotic optimality [27].
The maximum iteration time for RRT* is set to 50 s. Fig. 6(a)
shows the variation of collision distance over the movement
time during our trajectory planning experiments in a simple
scenario for various algorithms. By minimizing the path cost,
our approach allows the robot arm’s trajectory to approach
obstacles more closely, without exceeding safety margins.

Additionally, we perform 50 planning experiments in both
simple and complex scenarios, and then take the average of
the results from both sets. The comparative results are illus-
trated in Fig. 6(b). Benefiting from the fully differentiable
nature of our framework, which requires only approximately
3 ms per differentiation, we significantly reduce the path
cost in trajectory planning using SDF-SC significantly, while
maintaining a high success rate and relatively fast computa-
tion time.

To validate the self-collision detection capabilities of our
framework, we deliberately introduce self-collision configu-
rations into the initial trajectories. Our framework is tasked

Fig. 5: Trajectory optimization in simple (left) and complex
(right) scenarios, where the red dashed line represents the
trajectory generated by RRT*, and the green dashed line
represents the trajectory optimized using SDF-SS with RRT-
connect.

(a) (b)

Fig. 6: (a) Collision distance during the movement period.
(b) Comparative analysis of trajectory planning methods.

with detecting the presence of self-collisions along these tra-
jectories and optimizing them to eliminate such incidents. We
design approximately 20 such trajectories, and our system
successfully detects 95% of the self-collisions, while also
optimizing the trajectories to avoid these points. However, it
is important to note that due to the use of a steep gradient
to escape self-collisions, the trajectory transitions were not
as smooth as desired, necessitating additional interpolation
to refine the affected segments. Our framework is capable
of detecting both external and self-collisions within the
trajectory, while also using gradient guidance to optimize
trajectory and avoid collisions.

B. Reactive Control with SDF-SC

Inspired by NEO [28], we utilize the SDF-SC framework
to design a reactive controller, designated as NEO-SS, in-
tended for real-time dynamic obstacle avoidance. We define
the following quadratic programming (QP) problem [29] for
the controller:

min
x

g(x) =
1

2
x⊤Qx+ C⊤x

subject to Jx = ν

Ax ≤ B
X− ≤ x ≤ X+

(11)

where
x =

(
q̇

δ

)
∈ R(n+6) (12)

δ is a slack variable with respect to q̇, representing the dif-
ference between the desired and actual end-effector velocity
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ν. C maximizes the manipulability of the robot, which is
synthesized from Jm [30] and the identity matrix. In NEO,
the inequality constraints of a QP problem are represented
as:

Jdl
(q̃) ˙̃q(t) ≤ ξ

d− ds
di − ds

− n̂⊤
orl

ṗol
(t) (13)

where q̃ represents the subset of joint variables that affect the
distance to the obstacles, denoted by Jd. di for the activation
distance of the controller and ds for the safe stopping
distance. The variable l denotes the index of obstacles, and
the presence of multiple obstacles leads to a substantial
increase in the constraints derived from the equations, which
significantly impacts the success rate of solving the optimiza-
tion problem. In our SDF-SC framework, obstacles are not
represented as individual geometric shapes but are instead
denoted as a collection of point clouds. Consequently, we
can improve the inequality constraints as follows:

∂D

∂q̃
˙̃q ≤ ξ

D − ds
di − ds

− ṗ− s (14)

where ṗ represents the maximum velocity of the detected
obstacle points, and s denotes the self-collision boundary,
which is utilized to constrain the configurations to prevent
self-collisions.

To assess the effectiveness of the improvements, we con-
struct a simulation scenario as depicted in Fig. 7(b). In the
scenario, multiple obstacle spheres are moving toward the
robotic arm, which must complete the task of moving to a
specified posture while avoiding these dynamic obstacles. In
order to compare the effectiveness of the algorithm before
and after the improvement of the inequality constraints, we
set the adjustable parameters of NEO and NEO-SS to be
consistent, with di =0.4m, ds =0.02m, and ξ = 1.0, and
testing experiments are conducted under the same scenario.
The experimental data is illustrated in Fig. 7(a). It is evident
that NEO-SS exhibits reduced fluctuations, effectively keep-
ing the distance well within the safety threshold. Conversely,
NEO exhibits excessive fluctuations and results in a collision.

To evaluate the robustness of the reactive control algo-
rithm, we randomize the positions and velocities of the
obstacles within a certain range. The velocity of each ob-
stacle fluctuates randomly around 0.2 m/s. We perform 50
experiments to ascertain the per-step computational latency
of two control algorithms and to evaluate the efficacy of
collision avoidance in each experiment. The compiled data
regarding per-step latency and success rates are articulated
in Table IV. The experimental data indicates that in complex
scenarios involving multiple dynamic obstacles, the NEO-SS
algorithm demonstrates superior robustness compared to the
NEO algorithm.

As shown in Fig. 7(c), we implement our reactive control
algorithm NEO-SS on a robot arm platform. The platform
comprises a Franka Emika robotic arm and a Realsense
D435i camera mounted at a fixed location for detecting
obstacles. The robotic arm endeavors to execute reactive
control measures to avoid the introduced dynamical obstacles
concurrent with its mission to reach the designated target.

TABLE IV: Comparison between NEO and NEO-SS

Controller NEO NEO-SS(ours)
Average time 3ms 6ms
Success rate 58% 86%

(a)

(b)

(c)

Fig. 7: (a) Collision distance during the movement period.
(b) Simulation experiment. (c) Real robot experiment.

During the experimental procedure, the robotic arm exhibits
a distinct aversion to obstacles. As the obstacles approach
within a certain threshold, the arm articulates its joints to
move away from the obstacles, endeavoring to maintain the
collision distance within a safe margin. Once the obstacles
exit the reactive controller’s activation range, the arm re-
sumes its trajectory toward the target posture, calculated
based on the inverse kinematics solution. For demonstra-
tion videos in both simulation and real-world environments,
please refer to the attached video files.

V. CONCLUSIONS

In this paper, we improved the framework of learning
SDF based on the forward kinematics of articulated robots,
utilizing multiple extremely lightweight networks in par-
allel to more efficiently approximate SDF. Additionally,
we innovatively introduced self-collision detection into the
framework, resulting in a collision detector that completely
prevents collisions, termed SDF-SC. We then evaluated the
detector’s performance in both self-collision and external
collision detection, achieving highly satisfactory results in
both domains. Furthermore, we utilized the SDF-SC as a
collision constraint in trajectory optimization, enabling the
robot to minimize path cost during planning while ensuring
collision-free operation. Lastly, we integrated SDF-SC into
the design of a reactive controller, successfully achieving
dynamic obstacle avoidance in complex environments.

There are aspects of our approach that offer potential for
further improvement. In some cases, the requirement to avoid
self-collisions may lead the optimization solver to converge
to a local optimum. The reliance on numerical differentiation
for gradient computation leads to diminished efficiency. In
the future, we plan to extend our framework to dual-arm
robots to further enhance their capabilities.
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